skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Y-H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This short article highlights unsolved problems of magnetic reconnection in collisionless plasma. Advanced in-situ plasma measurements and simulations have enabled scientists to gain a novel understanding of magnetic reconnection. Nevertheless, outstanding questions remain concerning the complex dynamics and structures in the diffusion region, cross-scale and regional couplings, the onset of magnetic reconnection, and the details of particle energization. We discuss future directions for magnetic reconnection research, including new observations, new simulations, and interdisciplinary approaches. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract There is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth’s magnetosphere. 
    more » « less
  3. At the Earth’s low-latitude magnetopause, the Kelvin-Helmholtz (KH) waves, which are driven by the super-Alfvénic velocity shear across the magnetopause, have been frequently observed during periods of northward interplanetary-magnetic-field (IMF) and believed to contribute to efficiently transporting the solar wind plasmas into the magnetosphere. On the other hand, during southward IMF periods, the signatures of the KH waves are much less frequently observed and how the KH waves contribute to the solar wind transport has not been well explored. Recently, the Magnetospheric Multiscale (MMS) mission successfully detected signatures of the KH waves near the dusk-flank of the magnetopause during southward IMF. In this study, we analyzed a series of two- and three-dimensional fully kinetic simulations modeling this MMS event. The results show that a turbulent evolution of the lower-hybrid drift instability (LHDI) near the low-density (magnetospheric) side of the edge layer of the KH waves rapidly disturbs the structure of the layer and causes an effective transport of plasmas across the layer. The obtained transport rate is comparable to or even larger than that predicted for the northward IMF. These results indicate that the diffusive solar wind transport induced by the KH waves may be active at the flank-to-tail magnetopause during southward IMF. 
    more » « less